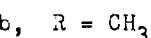


THE STRUCTURE AND SYNTHESIS OF OLEUROPEIC ACID

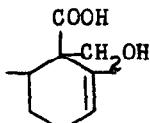
Raphael Mechoulam, Naftali Danieli and Yehuda Mazur

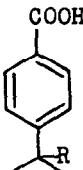

The Daniel Sieff Research Institute

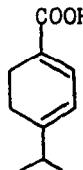
The Weizmann Institute of Science, Rehovoth, Israel


(Received 8 June 1962)

WE wish to report that oleuropeic acid¹ possesses structure Ia (p-ment-1-ene-7-oic acid).


Oleuropeic acid was isolated by Shasha and Leibowitz¹ from the hydrolysate of a bitter principle² present in the leaves, unripe fruit and root bark of the olive tree (Olea europaea var. soori). Oleuropeic acid was assigned¹ structure II, mainly on the basis of a sulphur dehydrogenation which reportedly gave 2,6-dimethyl-benzoic acid, although no direct comparison with an authentic sample was mentioned.


Ia, R = H


Ib, R = CH₃

II

IIIa, R = H

IIIb, R = OH

¹ B. Shasha and Y. Leibowitz, J. Org. Chem. **26**, 1948 (1961); B. Shasha and Y. Leibowitz, Nature, Lond. **184**, 2019 (1959).

² The bitter principle called oleuropein by these authors is undoubtedly different from the oleuropein, the structure of which was recently elucidated: L. Panizzi, M.L. Scarpati and G. Oriente, Gazz. Chim. Ital. **90**, 1449 (1960); H.C. Beyerman, L.A. van Dijck, J. Levisalles, A. Melera and W.L.C. Veer, Bull. Soc. Chim. **1812** (1961).

We felt that structure II is not sufficiently corroborated, especially since its carbon skeleton is unusual for the monoterpenoid class and therefore a reinvestigation of the problem seemed justified.

Following the published extraction and purification procedure, we succeeded in obtaining oleuropeic acid, m.p. 155-158°, $[\alpha]_D -100^\circ$, identical with the published values. Further purification was achieved by converting the acid into its methyl ester, chromatography on alumina and hydrolysis back to the free acid, $C_{10}H_{16}O_3$, m.p. 164-166°, $[\alpha]_D -125^\circ$, ν_{max} (in KBr) 1695 cm^{-1} (unsaturated carboxylic acid), 1655 cm^{-1} (s) (conjugated double bond), $\lambda_{\text{max}}^{\text{EtOH}} 218 \text{ m}\mu$ (ϵ 10.800), two active hydrogens (Zerewitinoff determination). Methyl oleopropate, $C_{11}H_{18}O_3$, Ib, was obtained as an oil, b.p. 112-114°/0.5 mm, $[\alpha]_D -104^\circ$, $n_D^{28^\circ} 1.5015$, $\lambda_{\text{max}}^{\text{EtOH}} 218$ (ϵ 12.800), ν_{max} (in CHCl_3) 3580 cm^{-1} (hydroxyl group), 1705 cm^{-1} (α,β -unsaturated ester), 1655 cm^{-1} (s) (conjugated double bond). The NMR spectrum of Ib (in CDCl_3) showed the presence of one olefinic proton at 2.98τ (split to an unresolved complex) and six protons of two methyl groups as a single peak at 8.80τ , indicating that these two methyl groups are structurally similar. No protons of a vinylic methyl group could be observed. Neither was the presence of a proton α to a hydroxyl group indicated. The non-splitting of the common signal of the methyl groups shows that they possess no α hydrogen. In addition their rather low value could be attributed to the deshielding effect of an α hydroxyl group.

The hydroxyl group does not undergo acetylation with acetic anhydride in pyridine and is not oxidized with "Jones' reagent".³ This supports the argument for its tertiary character. On catalytic hydrogenation (PtO_2/EtOH) Ia absorbs 1 mole of hydrogen, yielding an optically inactive product, m.p.

³ K. Bowden, I.M. Heilbron, E.R.H. Jones and B.C.L. Weedon, J. Chem. Soc. 39 (1946).

124-140°, probably a mixture of epimers.

Sulphur dehydrogenation yielded a crystalline mixture from which two compounds were isolated by chromatography. The less polar compound, m.p. 115-116°, is identical with cuminic acid (IIIa) while the more polar one is identical with 1'-hydroxy-cuminic acid (IIIb). Both compounds were compared directly with authentic samples.^{4,5}

Boiling of Ia with 10 per cent sulphuric acid resulted in dehydration giving the dienoic acid IV, m.p. 130-132°, $\lambda_{\text{max}}^{\text{EtOH}}$ 298 m μ (ϵ 7500).

These results are compatible with structure Ia only.

We have synthesized racemic oleuropeic acid by the sequence described in Fig. 1.

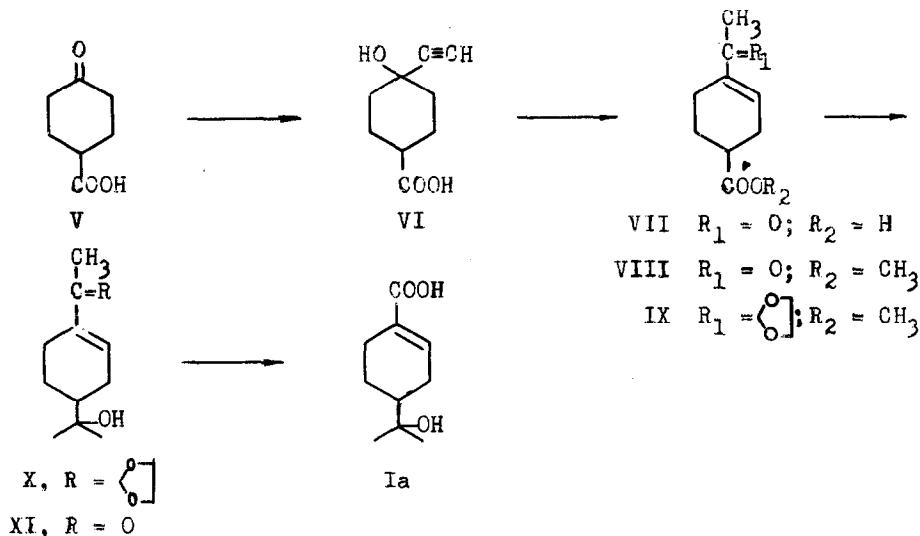


FIG. 1

Cyclohexanone-4-carboxylic acid (V) was condensed with potassium acetylidyne in *t*-butanol to give VI, m.p. 144-145°, $C_9H_{12}O_3$, which was rearranged to VII, $C_9H_{12}O_3$ m.p. 117-118°, $\lambda_{\text{max}}^{\text{EtOH}}$ 237 m μ (ϵ 15,700) by refluxing

⁴ M.S. Newman and E.K. Easterbrook, *J. Amer. Chem. Soc.* **77**, 3763 (1955).

⁵ O. Wiemann and J.A. Bladin, *Ber. Dtsch. Chem. Ges.* **19**, 583 (1886).

in formic acid. Esterification gave the oily VIII, which ketalized with ethylene glycol and *p*-toluene-sulphonic acid in benzene to IX, $C_{12}H_{15}O_4$, b.p. $105-110^\circ/1$ mm, $n_D^{27} 1.4870$. Reaction of IX with excess methyl magnesium iodide gave X, which on treatment with *p*-toluene-sulphonic acid in acetone-water was converted into the oily XI, $\lambda_{\text{max}}^{\text{EtOH}} 233 \text{ m}\mu (\epsilon 14,200)$. Oxidation with sodium hypoiodite in water gave Ia, m.p. $153-155^\circ$, identical with oleuropeic acid (comparison of the infra-red spectra). A mixture of the natural product (m.p. $164-166^\circ$) with the synthetic racemic acid melted at $159-162^\circ$.

While this manuscript was in preparation Herz and Wahlborg⁶ published the conversion of β (-)-pinene into Ia and IV. Professor Herz kindly supplied us with samples of these compounds. The identity of the dienoic acid (IV) was proved by direct comparison (m.m.p. and infra-red spectra). Ia (m.p. $154-156^\circ$) from β (-)-pinene has a rotation of $[\alpha]_D -68.7^\circ$ ⁷ and seems to be optically impure.⁸ A mixture of it with natural oleuropeic acid melted at $159-162^\circ$, whereas a mixture with the racemic synthetic Ia melted at $153-155^\circ$. The infra-red spectra of Ia from β (-)-pinene and that of oleuropeic acid were superimposable.

The absolute configuration of oleuropeic acid is determined as that of L-glyceraldehyde by its relationship to β (-)-pinene.^{6,9}

Acknowledgements - We are indebted to Prof. F. Sondheimer for his interest, to Prof. Herz for samples of Ia and IV and to Dr. Y. Shvo for the NMR determinations.

⁶ W. Herz and H.J. Wahlborg, J. Org. Chem. **27**, 1032 (1962).

⁷ Private communication by Professor Herz.

⁸ The β (-)-pinene used as starting material is reported as optically impure and further partial racemization might well have occurred in the course of the conversion.

⁹ G. Austerweil, Bull. Soc. Chim. **39**, 1643 (1926); A.J. Birch, Ann. Rep. Chem. Soc. **47**, 192 (1950).